Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(10)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626710

RESUMO

While meant for wound healing and immunity in response to injury and infection, inflammatory signaling is usurped by cancerous tumors to promote disease progression, including treatment resistance. The interleukin-1 (IL-1) inflammatory cytokine family functions in wound healing and innate and adaptive immunity. Two major, closely related IL-1 family members, IL-1α and IL-1ß, promote tumorigenic phenotypes and contribute to treatment resistance in cancer. IL-1 signaling converges on transactivation of the Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP-1) transcription factors. NF-κB and AP-1 signaling are also activated by the inflammatory cytokine Tumor Necrosis Factor Alpha (TNFα) and microbe-sensing Toll-Like Receptors (TLRs). As reviewed elsewhere, IL-1, TNFα, and TLR can promote cancer progression through NF-κB or AP-1. In this review, we focus on what is known about the role of IL-1α and IL-1ß in breast cancer (BCa) progression and therapeutic resistance, and state evidence for the role of NF-κB in mediating IL-1-induced BCa progression and therapeutic resistance. We will present evidence that IL-1 promotes BCa cell proliferation, BCa stem cell expansion, angiogenesis, and metastasis. IL-1 also regulates intracellular signaling and BCa cell hormone receptor expression in a manner that confers a growth advantage to the tumor cells and allows BCa cells to evade therapy. As such, the IL-1 receptor antagonist, anakinra, is in clinical trials to treat BCa and multiple other cancer types. This article presents a review of the literature from the 1990s to the present, outlining the evidence supporting a role for IL-1 and IL-1-NF-κB signaling in BCa progression.


Assuntos
Neoplasias da Mama , Interleucina-1/metabolismo , NF-kappa B , Neoplasias da Mama/tratamento farmacológico , Citocinas/metabolismo , Feminino , Humanos , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
J Cell Signal ; 2(4): 248-260, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34988553

RESUMO

INTRODUCTION: Inflammation drives prostate cancer (PCa) progression. While inflammation is a cancer hallmark, the underlying mechanisms mediating inflammation-induced PCa are still under investigation. Interleukin-1 (IL-1) is an inflammatory cytokine that promotes cancer progression, including PCa metastasis and castration resistance. We previously found that acute IL-1 exposure represses PCa androgen receptor (AR) expression concomitant with the upregulation of pro-survival proteins, causing de novo accumulation of castration-resistant PCa cells. However, acute inflammation is primarily anti-tumorigenic, while chronic inflammation is pro-tumorigenic. Thus, using the LNCaP PCa cell line as model, we found that PCa cells can evolve insensitivity to chronic IL-1 exposure, restoring AR and AR activity and acquiring castration resistance. In this paper we expanded our chronic IL-1 model to include the MDA-PCa-2b PCa cell line to investigate the response to acute versus chronic IL-1 exposure and to compare the gene expression patterns that evolve in the LNCaP and MDA-PCa-2b cells chronically exposed to IL-1. METHODS: We chronically exposed MDA-PCa-2b cells to IL-1α or IL-1ß for several months to establish sublines. Once established, we determined subline sensitivity to exogenous IL-1 using cell viability assay, RT-qPCR and western blot. RNA sequencing was performed for parental and subline cells and over representation analysis (ORA) for geneset enrichment of biological process/pathway was performed. RESULTS: MDA-PCa-2b cells repress AR and AR activity in response to acute IL-1 exposure and evolve insensitivity to chronic IL-1 exposure. While cell biological and molecular response to acute IL-1 signaling is primarily conserved in LNCaP and MDA-PCa-2b cells, including upregulation of NF-κB signaling and downregulation of cell proliferation, the LNCaP and MDA-PCa-2b cells evolve conserved and unique molecular responses to chronic IL-1 signaling that may promote or support tumor progression. CONCLUSIONS: Our chronic IL-1 subline models can be used to identify underlying molecular mechanisms that mediate IL-1-induced PCa progression.

3.
PLoS One ; 15(12): e0242970, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326447

RESUMO

Chronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR-independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1ß. Cells were treated with IL-1α, IL-1ß, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation-induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA-mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.


Assuntos
Androgênios/metabolismo , Interleucina-1/farmacologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Benzamidas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Subunidade p50 de NF-kappa B/metabolismo , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
4.
Pharmacol Ther ; 211: 107538, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32201312

RESUMO

Prostate Cancer (PCa) is the second leading cause of cancer-related death in men. Adenocarcinoma of the prostate is primarily composed of Androgen Receptor-positive (AR+) luminal cells that require AR transcriptional activity for survival and proliferation. As a consequence, androgen deprivation and anti-androgens are used to treat PCa patients whose disease progresses following attempted surgical or radiation interventions. Unfortunately, patients with advanced PCa can develop incurable castration-resistant PCa (CRPCa) due to mutated, variant, or overexpressed AR. Conversely, low or no AR accumulation or activity can also underlie castration resistance. Whether CRPCa is due to aberrant AR activity or AR independence, NF-κB signaling is also implicated in the initiation and maintenance of CRPCa and, thus, the NF-κB pathway may be a promising alternative therapeutic target. In this review, we present evidence that NF-κB signaling promotes CRPCa initiation and progression, describe the dichotomic role of NF-κB in the regulation of AR expression and activity and outline studies that explore NF-κB inhibitors as PCa therapies.


Assuntos
Antineoplásicos/farmacologia , NF-kappa B/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Antagonistas de Androgênios/farmacologia , Animais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , NF-kappa B/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos
5.
BMC Cancer ; 20(1): 46, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959131

RESUMO

BACKGROUND: Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly block HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ERα and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR- BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR- BCa and PCa cells to promote HR-independent survival and tumorigenicity. METHODS: We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR- BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in the BCa and PCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) and used the gene ontology web-based tool, GOrilla, to identify signaling pathways encoded by our RNA-seq data set. RESULTS: We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR- cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR- BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired hormone receptor independence and treatment resistance. We also assessed HR- cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR- cell lines. CONCLUSIONS: Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-1/farmacologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ativação Transcricional
6.
Prostate ; 80(2): 133-145, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730277

RESUMO

BACKGROUND: The androgen receptor (AR) nuclear transcription factor is a therapeutic target for prostate cancer (PCa). Unfortunately, patients can develop resistance to AR-targeted therapies and progress to lethal disease, underscoring the importance of understanding the molecular mechanisms that underlie treatment resistance. Inflammation is implicated in PCa initiation and progression and we have previously reported that the inflammatory cytokine, interleukin-1 (IL-1), represses AR messenger RNA (mRNA) levels and activity in AR-positive (AR+ ) PCa cell lines concomitant with the upregulation of prosurvival biomolecules. Thus, we contend that IL-1 can select for AR-independent, treatment-resistant PCa cells. METHODS: To begin to explore how IL-1 signaling leads to the repression of AR mRNA levels, we performed comprehensive pathway analysis on our RNA sequencing data from IL-1-treated LNCaP PCa cells. Our pathway analysis predicted nuclear factor kappa B (NF-κB) p65 subunit (RELA), a canonical IL-1 signal transducer, to be significantly active and potentially regulate many genes, including AR. We used small interfering RNA (siRNA) to silence the NF-κB family of transcription factor subunits, RELA, RELB, c-REL, NFKB1, or NFKB2, in IL-1-treated LNCaP, C4-2, and C4-2B PCa cell lines. C4-2 and C4-2B cell lines are castration-resistant LNCaP sublines and represent progression toward metastatic PCa disease, and we have previously shown that IL-1 represses AR mRNA levels in C4-2 and C4-2B cells. RESULTS: siRNA revealed that RELA alone is sufficient to mediate IL-1 repression of AR mRNA and AR activity. Intriguingly, while LNCaP cells are more sensitive to IL-1-mediated repression of AR than C4-2 and C4-2B cells, RELA siRNA led to a more striking derepression of AR mRNA levels and AR activity in C4-2 and C4-2B cells than in LNCaP cells. CONCLUSIONS: These data indicate that there are RELA-independent mechanisms that regulate IL-1-mediated AR repression in LNCaP cells and suggest that the switch to RELA-dependent IL-1 repression of AR in C4-2 and C4-2B cells reflects changes in epigenetic and transcriptional programs that evolve during PCa disease progression.


Assuntos
Interleucina-1/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Fator de Transcrição RelA/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1alfa/farmacologia , Masculino , NF-kappa B/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Androgênicos/genética , Fator de Transcrição RelA/genética
7.
Prostate ; 78(8): 595-606, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29527701

RESUMO

BACKGROUND: In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR+ ) PCa cells into AR negative (AR- ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. METHODS: LNCaP and PC3 PCa cells were treated with IL-1ß or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1ß, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. RESULTS: Comparative analysis of sequencing data from the AR+ LNCaP PCa cell line versus the AR- PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. CONCLUSIONS: Our data supports that IL-1 reprograms AR+ PCa cells to mimic AR- PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival.


Assuntos
Interleucina-1/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1/imunologia , Masculino , Células-Tronco Mesenquimais , Fenótipo , Neoplasias da Próstata/imunologia , Receptores Androgênicos/imunologia , Microambiente Tumoral/imunologia
8.
Prostate ; 76(14): 1312-25, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27403603

RESUMO

BACKGROUND: Neuroendocrine (NE) differentiation in prostate cancer (PCa) is an aggressive phenotype associated with therapy resistance. The complete phenotype of these cells is poorly understood. Clinical classification is based predominantly on the expression of standard NE markers. METHODS: We analyzed the phenotype of NE carcinoma of the prostate utilizing in vitro methods, in silico, and immunohistochemical analyses of human disease. RESULTS: LNCaP cells, subjected to a variety of stressors (0.1% [v/v] fetal bovine serum, cyclic AMP) induced a reproducible phenotype consistent with neuronal trans-differentiation. Cells developed long cytoplasmic processes resembling neurons. As expected, serum deprived cells had decreased expression in androgen receptor and prostate specific antigen. A significant increase in neuronal markers also was observed. Gene array analysis demonstrated that LNCaP cells subjected to low serum or cAMP showed statistically significant manifestation of a human brain gene expression signature. In an in silico experiment using human data, we identified that only hormone resistant metastatic prostate cancer showed enrichment of the "brain profile." Gene ontology analysis demonstrated categories involved in neuronal differentiation. Three neuronal markers were validated in a large human tissue cohort. CONCLUSION: This study proposes that the later stages of PCa evolution involves neuronal trans-differentiation, which would enable PCa cells to acquire independence from the neural axis, critical in primary tumors. Prostate 76:1312-1325, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinoma Neuroendócrino/patologia , Transdiferenciação Celular/fisiologia , Neurônios/patologia , Neoplasias da Próstata/patologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Antígeno Prostático Específico/biossíntese , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Receptores Androgênicos/genética , Células Tumorais Cultivadas
9.
J Cell Biochem ; 115(12): 2188-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25103771

RESUMO

Chronic inflammation is associated with advanced prostate cancer (PCa), although the mechanisms governing inflammation-mediated PCa progression are not fully understood. PCa progresses to an androgen independent phenotype that is incurable. We previously showed that androgen independent, androgen receptor negative (AR(-) ) PCa cell lines have high p62/SQSTM1 levels required for cell survival. We also showed that factors in the HS-5 bone marrow stromal cell (BMSC) conditioned medium can upregulate p62 in AR(+) PCa cell lines, leading us to investigate AR expression under those growth conditions. In this paper, mRNA, protein, and subcellular analyses reveal that HS-5 BMSC conditioned medium represses AR mRNA, protein, and nuclear accumulation in the C4-2 PCa cell line. Using published gene expression data, we identify the inflammatory cytokine, IL-1ß, as a candidate BMSC paracrine factor to regulate AR expression and find that IL-1ß is sufficient to both repress AR and upregulate p62 in multiple PCa cell lines. Immunostaining demonstrates that, while the C4-2 population shows a primarily homogeneous response to factors in HS-5 BMSC conditioned medium, IL-1ß elicits a strikingly heterogeneous response; suggesting that there are other regulatory factors in the conditioned medium. Finally, while we observe concomitant AR loss and p62 upregulation in IL-1ß-treated C4-2 cells, silencing of AR or p62 suggests that IL-1ß regulates their protein accumulation through independent pathways. Taken together, these in vitro results suggest that IL-1ß can drive PCa progression in an inflammatory microenvironment through AR repression and p62 induction to promote the development and survival of androgen independent PCa.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-1beta/fisiologia , Receptores Androgênicos/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Neoplasias da Próstata , Receptores Androgênicos/genética , Proteína Sequestossoma-1 , Ativação Transcricional
10.
Prostate ; 74(2): 149-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24122957

RESUMO

BACKGROUND: Bone marrow stromal cell (BMSC) paracrine factor(s) can induce apoptosis in bone metastatic prostate cancer (PCa) cell lines. However, the PCa cells that escape BMSC-induced apoptosis can upregulate cytoprotective autophagy. METHODS: C4-2, C4-2B, MDA PCa 2a, MDA PCa 2b, VCaP, PC3, or DU145 PCa cell lines were grown in BMSC conditioned medium and analyzed for mRNA and/or protein accumulation of p62 (also known as sequestome-1/SQSTM1), Microtubule-associated protein 1 light chain 3B (LC3B), or lysosomal-associated membrane protein 1 (LAMP1) using quantitative polymerase chain reaction (QPCR), Western blot, or immunofluorescence. Small interfering RNA (siRNA) was used to determine if p62 is necessary PCa cell survival. RESULTS: BMSC paracrine signaling upregulated p62 mRNA and protein in a subset of the PCa cell lines. The PCa cell lines that were insensitive to BMSC-induced apoptosis and autophagy induction had elevated basal p62 mRNA and protein. In the BMSC-insensitive PCa cell lines, siRNA knockdown of p62 was cytotoxic and immunostaining showed peri-nuclear clustering of autolysosomes. However, in the BMSC-sensitive PCa cell lines, p62 siRNA knockdown was not appreciably cytotoxic and did not affect autolysosome subcellular localization. CONCLUSIONS: A pattern emerges wherein the BMSC-sensitive PCa cell lines are known to be osteoblastic and express the androgen receptor, while the BMSC-insensitive PCa cell lines are characteristically osteolytic and do not express the androgen receptor. Furthermore, BMSC-insensitive PCa may have evolved a dependency on p62 for cell survival that could be exploited to target and kill these apoptosis-resistant PCa cells in the bone.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose/fisiologia , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Invasividade Neoplásica/patologia , Proteína Sequestossoma-1
11.
Plant J ; 73(2): 325-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23039100

RESUMO

Plants encounter environmental stress challenges that are distinct from those of other eukaryotes because of their relative immobility. Therefore, plants may have evolved distinct regulatory mechanisms for conserved cellular functions. Plants, like other eukaryotes, share aspects of both calcium- and calmodulin-based cellular signaling and the autophagic process of cellular renewal. Here, we report a novel function for an Arabidopsis calmodulin-related protein, CML24, and insight into ATG4-regulated autophagy. CML24 interacts with ATG4b in yeast two-hybrid, in vitro pull-down and transient tobacco cell transformation assays. Mutants with missense mutations in CML24 have aberrant ATG4 activity patterns in in vitro extract assays, altered ATG8 accumulation levels, an altered pattern of GFP-ATG8-decorated cellular structures, and altered recovery from darkness-induced starvation. Together, these results support the conclusion that CML24 affects autophagy progression through interactions with ATG4.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cisteína Proteases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Relacionadas à Autofagia , Proteínas de Ligação ao Cálcio/genética , Cisteína Proteases/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Fluorescência Verde , Plasmídeos , Isoformas de Proteínas , Proteínas Recombinantes , Técnicas do Sistema de Duplo-Híbrido
12.
Autophagy ; 8(4): 650-63, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22441019

RESUMO

Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.


Assuntos
Autofagia , Células da Medula Óssea/metabolismo , Neoplasias Ósseas/secundário , Diferenciação Celular , Interleucina-6/metabolismo , Células Neuroendócrinas/patologia , Comunicação Parácrina , Autofagia/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Células Neuroendócrinas/efeitos dos fármacos , Testes de Neutralização , Comunicação Parácrina/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
13.
Biomaterials ; 31(29): 7567-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20630586

RESUMO

Cell theranostics is a new approach that unites diagnosis, therapy and confirmation (guidance) of the results of therapy in one single process at cell level, thus principally improving both the rapidity and precision of treatment. The ideal theranostic agent will support all three of the above functions in vivo with cellular resolution, allowing individual assessment of disease state and the elimination of diseased cells while leaving healthy cells intact. We have developed and evaluated plasmonic nanobubbles (PNBs) as an in vivo tunable theranostic cellular agent in zebrafish hosting prostate cancer xenografts. PNBs were selectively generated around gold nanoparticles in cancer cells in the zebrafish with short single laser pulses. By varying the energy of the laser pulse, we dynamically tuned the PNB size in a theranostic sequence of two PNBs: an initial small PNB detected a cancer cell through optical scattering, followed by a second bigger PNB, which mechanically ablated this cell without damage to surrounding tissue, while its optical scattering confirmed the destruction of the cell. Thus PNBs supported the diagnosis and guided ablation of individual human cancer cells in a living organism without damage to the host.


Assuntos
Nanoestruturas/uso terapêutico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Animais , Linhagem Celular Tumoral , Ouro/química , Humanos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
14.
Cancer Res ; 69(7): 2817-25, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19318554

RESUMO

In tumors, alternative translation and posttranslational proteolytic cleavage of full-length cyclin E (EL) produces tumorigenic low molecular weight cyclin E (LMW-E) isoforms that lack a portion of the EL amino-terminus containing a nuclear localization sequence. Therefore, we hypothesized that LMW-E isoforms have altered subcellular localization. To explore our hypothesis, we compared EL versus LMW-E localization in cell lysates and in vivo using fractionation and protein complementation assays. Our results reveal that LMW-E isoforms preferentially accumulate in the cytoplasm where they bind the cyclin E kinase partner, cyclin-dependent kinase 2 (Cdk2), and have associated kinase activity. The nuclear ubiquitin ligase Fbw7 targets Cdk2-bound cyclin E for degradation; thus, we examined if altered subcellular localization affected LMW-E degradation. We found that cytoplasmic LMW-E/Cdk2 was less susceptible to Fbw7-mediated degradation. One implication of our findings is that altered LMW-E and LMW-E/Cdk2 subcellular localization may lead to aberrant LMW-E protein interactions, regulation, and activity, ultimately contributing to LMW-E tumorigenicity.


Assuntos
Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Humanos , Peso Molecular , Neoplasias/enzimologia , Isoformas de Proteínas , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
15.
Plant Signal Behav ; 2(6): 446-54, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19517005

RESUMO

In plants, flowering is a critical developmental transition orchestrated by four regulatory pathways. Distinct alleles encoding mutant forms of the Arabidopsis potential calcium sensor CML24 cause alterations in flowering time. CML24 can act as a switch in the response to day length perception; loss-of-function cml24 mutants are late flowering under long days, whereas apparent gain of CML24 function results in early flowering. CML24 function is required for proper CONSTANS (CO) expression; components upstream of CO in the photoperiod pathway are largely unaffected in the cml24 mutants. In conjunction with CML23, a related calmodulin-like protein, CML24 also inhibits FLOWERING LOCUS C (FLC) expression and therefore impacts the autonomous regulatory pathway of the transition to flowering. Nitric oxide (NO) levels are elevated in cml23/cml24 double mutants and are largely responsible for FLC transcript accumulation. Therefore, CML23 and CML24 are potential calcium sensors that have partially overlapping function that may act to transduce calcium signals to regulate NO accumulation. In turn, NO levels influence the transition to flowering through both the photoperiod and autonomous regulatory pathways.

16.
Plant Physiol ; 139(1): 240-53, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113225

RESUMO

Changes in intracellular calcium (Ca(2+)) levels serve to signal responses to diverse stimuli. Ca(2+) signals are likely perceived through proteins that bind Ca(2+), undergo conformation changes following Ca(2+) binding, and interact with target proteins. The 50-member calmodulin-like (CML) Arabidopsis (Arabidopsis thaliana) family encodes proteins containing the predicted Ca(2+)-binding EF-hand motif. The functions of virtually all these proteins are unknown. CML24, also known as TCH2, shares over 40% amino acid sequence identity with calmodulin, has four EF hands, and undergoes Ca(2+)-dependent changes in hydrophobic interaction chromatography and migration rate through denaturing gel electrophoresis, indicating that CML24 binds Ca(2+) and, as a consequence, undergoes conformational changes. CML24 expression occurs in all major organs, and transcript levels are increased from 2- to 15-fold in plants subjected to touch, darkness, heat, cold, hydrogen peroxide, abscisic acid (ABA), and indole-3-acetic acid. However, CML24 protein accumulation changes were not detectable. The putative CML24 regulatory region confers reporter expression at sites of predicted mechanical stress; in regions undergoing growth; in vascular tissues and various floral organs; and in stomata, trichomes, and hydathodes. CML24-underexpressing transgenics are resistant to ABA inhibition of germination and seedling growth, are defective in long-day induction of flowering, and have enhanced tolerance to CoCl(2), molybdic acid, ZnSO(4), and MgCl(2). MgCl(2) tolerance is not due to reduced uptake or to elevated Ca(2+) accumulation. Together, these data present evidence that CML24, a gene expressed in diverse organs and responsive to diverse stimuli, encodes a potential Ca(2+) sensor that may function to enable responses to ABA, daylength, and presence of various salts.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fotoperíodo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Calmodulina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Transporte de Íons , Dados de Sequência Molecular , Pressão Osmótica , Plantas Geneticamente Modificadas , Plântula/efeitos adversos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...